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The Relation between the Velocity and Mass Distributions. 
The Role of Collisionless Relaxation Processes 
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We consider steady-state mass distributions (mass functions) attained at the 
nonlinear stage of fragmentation as a result of fragment coalescence. The 
influence of the fragment velocity distribution on the mass function is discussed. 
The kinetic equations governing the fragments "quasiparticles" are solved using 
the group symmetry properties of the collision integral. We have calculated 
power indices and locations of the breaking points for the ross spectrum 
(luminosity function) associated with the transition from the collisionless 
Lynden-Bell type to the Maxwellian distribution, as well as with the 
predominance of either purely geometric or Newtonian collision cross sections. 
The power indices found are in a reasonable agreement with the values observed 
for star or galaxy clusters. 
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1. INTRODUCTION 

The mass spectrum determining the luminosity function of galaxy or star 

clusters currently is believed to be formed at the nonl inear  stage of fragmen- 

tation, with the dominant  process being the coalescence of fragments in 
collisions, provided the fragment masses are not too small (see the reviews in 

Refs. 1 and 2). This renders reasonable attempts to determine the said 

portion of the spectrum by solving the coagulation equation (see, e.g., 
Refs. 3-7).  That equation can be derived by averaging over velocities the 
kinetic equations which govern the behavior of fragments treated as particles 
possessing momentum and mass, i.e., values conserved during collisions. The 
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velocity distribution influences the mass distribution (in particular, owing to 
the fact that the collision cross section depends on relative velocity). Large- 
scale fluctuations are subject to a rapid collisionless relaxation via self- 
consistent gravitation fields, ts) As a result a steady-state velocity distribution 
is attained which has, in the simplest case, the same form as the equilibrium 
distribution although with a "temperature" proportional to masses m of the 
constituent particles. Thereby the mass is not involved in the distribution 
function, which is characteristic of motion in a purely gravitational field, 
viz., 

The substantially slower collisional relaxation results in the Maxwellian 
distribution 

)~M ~ -  exp (2) 

with T expressed in energy units. 
Since the equilibrium distribution Eqs. (1) and (2) depend on the ratio 

of momentum to some power of mass, it is possible to obtain self-similar 
solutions of the kinetic equation. The same is true for nonequilibrium 
stationary (or quasistationary) distributions of similar form. 

2. KINETIC EQUATION IN THE SPACE OF 
MOMENTA AND MASSES 

The solution of the kinetic equation for the momentum and mass 
distribution f ( m ,  p), which will be discussed below, makes use of group 
(symmetry) properties of the equation. ~ For binary collisions resulting in 
fragment coalescence, the equation can be represented as 

f ( q )  = f dq, dq2[W(q l q~q2) f ( q , )  f (q2) 

-- W(q, I qq2) f (q ) f (q2)  - W(q2 I q q , ) f ( q ) f ( q , ) ]  (3) 

where q -  (m, p). We do not allow for processes in which mass is not 
conserved (such as accretion, mass losses during collisions, etc.); therefore 
the probability W is proportional to the 6 functions responsible for mass and 
momentum conservation, viz., 

W(q I qlq2) = U(qlqlq2)  6(rn - ml - mz) 6(p - pl  - P2) (4) 
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The amplitude Uq is proportional to the collision cross section and the 
relative velocity v. For spherical fragments of radii r~ and r2 it is. O4) 

mx_}_m 2 ] 
U(q]qlq2)=~(r~+r2) 2 l + 2 G v 2 ( r  ~+r2 ) v (5) 

With a fixed density of fragments r ~ m 1/3, however, along with this case, 
important though it is, we shall consider the generalization r ~ m s. 

In the limiting cases of impact (Gm/rv2~ 1) or purely gravitational 
(Gm/rv z ~> 1) interaction, and with the density being a power-law function of 
mass, Uq is a homogeneous function of both masses and momenta, hence it 
can be represented symbolically as Uq ~ m ~ [p[~, or explicitly as 

U(2m, pp ] 2mx,/apl ; )].m2,/./p2 ) 

= 2~la~U( m, P [ ml,  Pl ; m2, P2) 

with 

(6) 

~5=t 2 f l - 1  l +1 G m l ~ l  
( f l + 2  and ~=  - 1  for - -  rv 2 >>1 

Before going over to the analysis of the coagulation equation, let us 
dwell shortly on Eq. (3). As long as the homogeneity condition of Eq. (6) 
holds, the collision integral is characterized by a nontrivial symmetry ~1M3) 
permitting one to obtain a Kolmogorov-type nonequilibrium steady-state 
solution. The solution, a power-law function of its arguments, f (q)  ~ rn k [p]l, 
corresponds to a constant mass flux J (since the mass increases in the 
coalescence processes, the flux is directed from smaller to larger masses). 

To derive the solution, we employ in the second and third terms of the 
integrand in Eq. (3), respectively, the following transformations (1~2'~5) (see 
Fig. 1): 

G2 " ml -4 m, ~ ml ; --* P2, PZ --~ ~22 g2 gzPl 

Gl:m2 --~ m, ml--* m2; P2 -~ gl Pl, Pl~-~agaP2 

(7) 

which have the meaning of extensions and rotations 

Pi P ! 
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A 
6-e 

,4 G-r 

Fig. 1. Symmetry transformations for the collision integral, including extensions and 
rotations, which do not change fixed values of rn and p. 

in the m and p spaces. Taking into account the invariance of the probability 
function during rotations in the p space, the collision integral can be 
factorized, i.e., 

Ist{f(q)} = f dq, dqz W(q l qlq2) 

with o9= 2 + 6  + 2k, t /=  6 + ~+  21. 
With co =--1  and q = 0 ,  the integral nullifies by virtue of the mass 

conservation law, yielding the following index values to describe steady-state 
isotropic distributions: k = - (6  + 3)/2 and l = - (~  + 6)/2. 

Thus, for impact and gravitational interactions, flux-dependent mass 
and momentum distributions have the form 

tm-t~+l)p -7/2 Gml~l 
f ( m , p ) ~  fm_~+5~p_5/2, rv: >>1 (9) 
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3. COAGULATION EQUATION FOR THE MASS 
DISTRIBUTION FUNCTION 

The distributions of Eq. (9) can be formed if both the velocity and mass 
relaxation times are of the same order of magnitude. Consider now a system 
where the velocity relaxation is faster than the mass relaxation. Then the 
distribution can reach an equilibrium with respect to velocities and the 
coalescence process is controlled by the coagulation equation for the mass 
distribution function, fm = f d p f ( m ,  p): 

where 

/m = f dml dm2[Wmlmlm2fmlfm2 

-- Wmllm2rnfmzfm q- Wm21mmlfmfml] (10) 

Wmlmlm2 = Umlm,m2 5(m - m I - m2) (1 i) 

It can be obtained by averaging Eq. (3) over momenta. Now we represent the 
distribution function f ( m ,  p) as 

f ( m ,  p) = m-3afro Z 

[a = 1 for the Lynden-Bell case of Eq. (1) and a = 1/2 for the Maxwellian 
case of Eq. (2)]. The first factor in Eq. (12) has been introduced for the 
convenience of normalizing the momentum distribution, viz., 

f dTrz(n ) = where ~ = p / m  '~ (13) 1 

The coagulation probability involved in Eq. (11) is 

Umlmimi=f  d n d n ~ d n 2 U ( q l q l q z ) ~ ( p - p l - P 2 ) Z ( n l ) Z ( n 2 )  (14) 

The homogeneity of Uq entails a homogeneity of U m, which is governed not 
by fragment masses alone but by the velocity distribution of Eq. (12) as well, 
i.e., 

UAml.~ml,.a,m~=~UUmlmlm2, ~l=(~Af-O~ (15) 

Here again we restrict ourselves to the steady-state solution corresponding to 
a constant mass flux ~" in the mass space which implies the presence of a 

822/38/1 2 15 
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source at smaller masses. 3 If  Eq. (15) holds, such a solution is a power 
function arm ~ mS; it can serve as a sufficiently good intermediate approx- 
imation valid up to the nonstat ionary edge at larger masses and down to 
accretion-controlled regions at smaller masses [2] (where mass is not 
conserved in collisions). 

Upon tranforming the masses as per Eq. (7) we can factorize the 
integrand of  Eq. (10) to become 

m m (16) Ist{fm} = f dml dm 2 Wmlmlm2fmlfmz [ 1 - - ( - - ~ 1 )  v -  ( - -~f)~ ' ]  

with v = 2 + u + 2S. For  v = - 1  we obtain the steady-state solution: 

3 + u  3 + 6 + a ~  
fm =Am~, s - 2 2 (17) 

Flux-dependent mass distributions for impact and gravitational 
interactions have the form 

tm -~+ '+~/2)  Gm l ,~l  (18) 
frn~J1/2 tm -(13+5-a)/2, rff 2 >>1 

g being the characteristic velocity. The relevant proportionality factors can 
be calculated as in Ref. 15. 

As can be seen in going over from the impact to gravitational 
interaction the power index of  the distribution changes by 
AS = - ( f l  + 2a - 3)/2. With a = (3 - f l ) /2  a power-law mass distribution 
without kinks is possible, as a result of  the homogeneity of  Um/m~m2 in the 
case where the complete probability U(qlqlq2) of Eq. (5) satisfies the 
generalized homogeneity condition 

3 - f l  (19) U(J,m, 2~pl~,ml,2~pl;2m2,)~p2)=2~U(qlqlq2), x -  2 

and in the function o f  Eq. (12) a = x. 
The power indices for flux-dependent distributions of  Eq. (18) for the 

constant-density case (i.e., fl = 1/3) are summarized in Table 1. They are 
different from those found previously for zero-flux power-law mass 
functions ~3-7) representing the evolution of  initial distributions in the absence 
of  an external source. 

3 Solutions in the presence of a source were considered in the theory of a weak 
turbulence, ~1~13) as well as in problems pertaining to aerosol coagulation though by 
different methods, e.g. Ref. 16-18. In Kharkov, the efforts in these directions were supported 
by I. M. Lifschitz. 
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Table 1 

Density Interaction type 

fl = 1/3 

Relaxation Lynden-Bell, 
mechanism: a = 1 

Maxwell, 
a = 1/2 

Gravitational Contact 
Gm/rg 2 >> 1 Gm/r~ 2 4~ 1 

S = - 1 3 / 6  S = - 1 1 / 6  
-2 .17 -1.833 

S = - 29 /12  S = - 19 /12  
-2 .42  -1 .58 

4. LOCALITY AND STABILITY OF THE STEADY-STATE 
MASS SPECTRUM 

The convergence of  the collision integral in Eq. (10) over flux-dependent 
distributions, which disctates their locality,(1~12' 15) depends on the behavior  
of  the coagulation probabil i ty (14) with m I <~ m, m 2, i.e., 

U l u2 (20) Umlmlm2~" m l  m2 

The condition of convergence at m 1 ~ 0 is 

U - - 2 U  1 --  1 < 0  (21) 

moreover  this condition guarantees convergence at larger masses m I --, oo. 
For arbi trary a and fl it reduces to the inequality 

aft -- 2(a -- 1) 0(1 - a)  
1 + 3 ~  

2 +- I/ 1 < 0 (22) 

where O(x) is the Heaviside function. 
As follows from Eq. (21), the flux-dependent distributions of  Eq. (18) 

formed by the collisional relaxation (a = 1/2) will be local if 

1 Gm 1 G m  
I~1 =5-, r~-~> 1, I/~1 < ~ - ,  rzT----7-,~ 1 (23) 

whereas in the case of  a collisionless relaxation (a = 1) if 

1 G m  
]fl[ < 2 '  rz7 ---T • 1 (24) 
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Among the constant-density mass spectra represented in Table 1, local 
are those with power indices equal to S = - 2 9 / 1 2  and -11/6 .  

Now we shall analyze the stability of local steady-state distributions of 
Eq. (17) against small perturbations. Let 

fro(t) = f ~ ) +  6fm(t ) (25) 

where fro) is the steady-state distribution. By linearizing Eq. (10) in film(t) 
and making use of the homogeneity of Eq. (15), we obtain for the Mellin 
transform of the perturbation 

;? O(z, t) = dm mZ-lF(m, t) 
(26 )  

r ( m ,  t) - ~ f m ( t ) / f ~  ~ 

a linear differential-difference equation 

~q~(z, t) (z + q~ 

d "  1 

A ( z )  = A - i  jo a x  U l , x , l _ x X ' ( 1  - x )S (x  - z  + (1 - x ) - 9 1 1  - x )  z + l  - x ~+1] 

( 2 a )  

With u = 1, Zq. (27) becomes a differential equation for which the 
solution to the problem of evolution of the initial perturbation is 

fifm(t) = f~ )  F(mx, O) x~e ia(z)t (29) 
-ioo Dri 

Let the initial perturbation be localized, i.e., satisfy the condition 

afro(O) 
lim f(m0 ) - 0 (30) 

Then, as follows from Eq. (29) and the analytic properties of A(z) deter- 
mined by the asymptotic behavior of Pro~re,m2 [see Eq. (20)], the contribution 
to Eq. (29) comes mainly from samll Z's, i.e., 

3fm(t ) ~ f~ )F(me  -ta'(~ 0), A'(0)  - ~ > 0 (31) 
g = 0  

Hence, 6fro ~ 0 as t ~ oo, i.e., i.e., the initial distribution is stable. Here 
we stress that locality is sufficient to make a steady-state flux-dependent 
distribution stable. Note that the decay of the perturbation with t--+ oo is 
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condit ioned by the decrease of  the initial per turba t ion  at m ~ 0  [cf. 
Eq. (30)], since re laxat ion tends to shift the per turbat ion  towards  larger 
masses.  This gives grounds to expect s tabil i ty also with u 4 :1  when a direct  
analysis  is too complicated.  

5. MASS SPECTRA OF GALACTIC AND STELLAR CLUSTERS 

To get an insight into the nature of  the mass  spectrum, let us restrict  the 
considerat ion by fragments of  equal density, compar ing  the rates of  various 
relaxat ion processes.  The result for a constant  densi ty (fl = 1/3) is plot ted in 
Fig. 2, showing, on the mass  vs. f ragment  veloci ty plane, lines corresponding 
to equal i ty  of  any two relaxat ion times. The broken curves confine the 
(shaded) region of  moderate  masses and " in termedia te"  velocities,  where 
coll isionless re laxat ion dominates  over coll isions which is typical  of  the 
systems of  interest to us. 4 

4 We assume for the collisionless relaxation r a ~ (Gff)  -1/2,  Though this estimate is correct 
only for sufficiently strong initial fluctuations [12, 19], this seems to be a natural 
assumption in our case. 

/77 
/ 

M 

?'-... 

m2 

V 
Fig. 2. Competition of relaxation processes. The solid line demarcates regions with essen- 
tially gravitational (to the left) and contact (to the right) interactions. The broken line 
demarcates regions of domination, respectively, of the collisionless (right) and gravitational 
(left) relaxation. The dot-dashed curve demarcates regions of domination, respectively, of the 
contact (right) and Lynden-Bell type relaxation. 
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The broken lines intersect at point (M, V) whose position depends on 
both the mean density /7 of the system and the fragment density P0. 
Specifically, if R is the mean separation between fragments and P/Po ~- 
( r / R ) 3 ~  1 then ~t--=R3(p0p')l/2 and V ~ R ( G 3 p ~ )  1/6. To the left from the 
line, Newtonian collisions due to the gravitational interaction dominate (with 
the characteristic time ~G = (R3/r2v)(Gm/rf2)-2)  �9 

These tend to form Maxwellian-like velocity distributions. The same 
point (114, I 7) also belongs to the solid curve where interaction times of purely 
contact and Newtonian collisions are equal. In the Lynden-Bell region this 
curve demarcates the region of "smaller" masses where contact collisions are 
essential from that of "larger" masses where Newtonian collisions, resulting 
in coalescence and forming the ross spctrum, are essential. This is why 
collisions of the latter type, next in rate process after the eollisionless relax- 
ation, are important. 5 

For rough estimates we can assume the distributions to be localized 
near the lines V =  V L < l ? (for the Lynden-Bell case) and mv2/2 = T (for the 
Maxwellian case). Then we find that in the collisionless relaxation domain 
(m < ~2) ,  coalescence is controlled by impact collisions for m < ~ ,  or 
Newtonian collisions for ~ ,  < m < ~ 2 .  In the range of collisional relaxation 
(m > ~ 2 )  the major role belongs to gravitational interactions resulting in 
fragment coalescence. 

The power index grows with increasing m as - S  = 11/6 ~ 13/6 ~ 29/12 
(cf. Fig. 3a). Kinks (break points) of the spectrum correspond to the 
following mass values: 

93l, = M(vL/V)  3 -= (a3po)- ,/2 v~ 
(32) 

~2  = M(vL/V) 3/~ = (C-3p) I /4 (RvL)3 /~  

with M = R3po and V = R(GPo) 1/2. 
Comparing the calculated power indices with the values observed ~2'2~ 

for stars we see that the calculated values S = - 1 . 8 ;  - 2 . 4  are in a rather 
satisfactory agreement with the observations (the average index S = - 2 . 5 ,  (z) 
some portion of the observed spectrum have S = - 1 . 8 ) .  

The transient effects neglected in the analysis should result in a cutoff 
(sharper slopes) of the spectrum at larger masses while violation of the mass 
conservation law should manifest itself at smaller masses. 

At point m2, the power index changes by AS = 1/4, the steeper depen- 
dence (Newtonian interaction) corresponding to the transition from 

s Strictly speaking, the Lynden-Bell relaxation forms the distribution of sufficiently large-scale 
fluctuations whereas the true fragment distribution may differ from the one employed. The 
latter, however, yields the required distribution after being averaged over fluctuation scales. 
The mass spectrum is assumed to be accordingly smoothed. 
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-< 
"< ,-se_ 

~'~'7r d?~72 /'t7 ~r~)'7'~f ~J'~2 /72 
Fig. 3. The mass spectrum for (a) v L < ~7 and (b) v L > TT. The figures are power index 

values (--S). 

collisionless to collision-controlled distributions. In the case of  contact  
interactions the transition from the Lynden-Bell to the Maxwell ian 
distribution would result in a flattening of  the spectrum, with a 
correspondent change of the power index by A S  = -1//4.  

The topography of regions corresponding to different relaxation 
mechanisms and positions of  the kinks can be influenced by the law of  
density variation, i.e., the valu e of  ft. 6 

Considering galaxy clusters, v 1 > j7 cannot  be excluded. The situation is 
aggravated by the fact that collisions are likely to form nonequilibrium 
distributions (since the conditions are nonsta t ionary and an equivalent 
source s present). Nonetheless, let us assume that a Maxwell ian distribution 
is established in the case. Then, circumventing the node (34, V) from the side 
of  larger velocities and msses, we obtain the following sequence of  indices 
with the increase of  mass  (Fig. 3b): - S =  11/6--* 19/12 ~ 29/12, the 
positions of  kinks being 

~J~l = M ( V L / V ) -  3/2 = (GZp~3),/4(R -3t)L)-3/2 ( 3 3 )  

~ 2  = M ( v t / r  3/'~ = (G - 3po8r ) 1/2~ 9vt)3/,0 (34) 

The plot of  Fig. 3b resembles the luminisity function for Comal  
Berenices (2~) while Abell 's  kink (12) rather corresponds to Fig. 3b. 

6 It can be seen that the kinks associated with changes in the distribution form for the same 
coalescence mechanism are universal (independent of fl). 
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It should be noted that  in the mass spectra  calculated,  the proper ty  of  
local i ty  is revealed by those asymptot ics  which correspond either to the 

smallest  

or u l t imately  large 

masses.  The nonlocal i ty  of  power law asymptot ics  in the intermediate  mass  
range seems to be of  little importance,  since the limiting cases m ~ 0, oo 
yield local distr ibutions.  

Rough est imates of re laxat ion t imes confirm the real i ty of the 
mechanisms considered.  

Obvious ly  enough the analysis  presented cannot  be c la imed as a 
complete  descr ipt ion of  the luminosi ty  function (mass function) (cf. Ref. 22 
where mechanisms neglected by  these authors are discussed).  Yet the results 
obta ined which correspond qual i ta t ively to typical  initial mass  functions (for 
velocities of  the coll iding fragments  insufficient for crushing) suggest that  
coalescence might  be a cri t ical  factor in shaping the initial mass  distr ibution,  

at least over some range of  masses.  
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